提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
让“无声世界”感受赛场魅力!带你看看冬奥手语数字人有哪些奥秘******
2022年2月4日,第24届冬季奥林匹克运动会在北京举行,让世界目光再次聚焦中国。本届北京冬奥会秉持绿色、共享、开放、廉洁的办赛理念,凝聚中国科技力量,面向世界、面向未来,向全球奉献了一场精彩、非凡、卓越的奥运盛会。
本届冬奥会运用最新科技手段,为全世界观众提供了惊艳的现场转播和全方位覆盖报道,北京冬奥会也成一场上科技含量高的奥运会。赛事活动期间,为了让各类人群都能平等地享受本届冬奥盛会,北京电视台上线了智能手语播报数字人,在《北京新闻》和《北京您早》等节目中进行冬奥专题手语播报,为听障人士带来精彩赛事报道。
最新数据显示,我国听障人群超过2700万,这部分人群与健听人一样,他们对教育、社交、娱乐等信息获取都有巨大的需求。但长期以来,传统人工手语翻译工作量大,且主持人和手语主持人配合难度极高。手语动作表情复杂,语序与正常语序差异大,正常情况下想要熟练掌握手语大约需要2年左右的时间,还要结合语境进行猜测。
受北京市科委科技冬奥专班委托,北京电视台联合凌云光、智谱AI等业内科技公司,在北京市残疾人联合会和市残联聋人协会等支持下,用3个多月时间,让手语播报数字人完成了近10万条手语语料学习,且翻译准确率高达90%。
在如此短的时间内实现这项高难度动作,智能手语数字人是如何做到,在这背后又有哪些技术创新难点?
在多位业内人士看来,近年来人工智能体系建设重点布局在算法层和应用层,数据层建设远远不足,并且针对数字人相关产业,底层数据库的数量、质量和开源程度还明显不足。尤其是国内现有的手语语料数据库数量少,且多以图像、视频等二维平面为主,无法满足AI(人工智能)训练的需求。
同时,因手语语序与中文语序差异大,方言分化更加复杂,且需要通过表情、口型、动作等方式来传达信息。除了传统的二维平面图像、视频采集,三维肢体运动、表情信息数据采集及结构化参数表达外,手语语料数据库建设对三维运动信息捕捉也十分重要。
凌云光手语数字人产品相关负责人介绍,在建设高质量手语语料库的同时,他们充分调研了2022北京冬奥专用手语术语,并联合北京市残联、聋人协会等相关组织机构,进行数据标注,建设手语语义映射关系,不仅完善了国内手语数据库的建设,也为手语推广和AI研究留下了宝贵的数据资产。
该负责人举例说,基于“悟道2.0”超大规模人工智能模型的技术支撑,手语数字脑用计算机模仿听障人士的大脑,将看到的中文文本信息转换成手语词汇序列,包括中文语义蒸馏模型和AI手语分词快编算法的研究。中文语义蒸馏模型用于从输入的文稿或文本中提取出关键的语义信息,将中文文本语义提炼和精简,形成精准匹配适合手语表达的文本;AI手语分词快编算法则用于将蒸馏得到的中文文本,根据冬奥手语语料库划分成相应的手语词汇序列,供数字人做表达输入。
该负责人还提到,数字人是冬奥手语播报的载体和展现形式,通过高精度写实数字人全流程制作方案,可实现一键数字建模,高度还原真人发肤,重新毛孔等细节,更加真实亲切。同时,通过跨模态拟人生成算法,还可以将手语词汇序列,生成相应的动作信息,驱动数字人模型做出相应的动作、手势和表情。(姚坤森)
(文图:赵筱尘 巫邓炎)